Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, YS) → YS
app(cons(X), YS) → cons(X)
from(X) → cons(X)
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X), cons(Y)) → cons(app(Y, cons(X)))
prefix(L) → cons(nil)
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, YS) → YS
app(cons(X), YS) → cons(X)
from(X) → cons(X)
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X), cons(Y)) → cons(app(Y, cons(X)))
prefix(L) → cons(nil)
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
from1 > cons1
zWadr2 > app2
zWadr2 > cons1
prefix1 > nil
prefix1 > cons1
Status: trivial